Rev. H Overview

Rev. H Adoption Overview

- Effective January 1, 2018
- Referenced in 2018 IBC

States with County/City Adoption of Rev. H

Panel Introductions

Bryan Lanier, P.E., S.E. Director, Broadcast Engineering American Tower Corporation

Tyler Stevens, P.E. Manager Engineering Crown Castle Tyler.Stevens@crowncastle.com

Mike Oglesby, P.E. Senior Engineering Manager Kimley-Horn Michael.Oglesby@kimley-Horn.com

Overview of Changes

Capacity Effects	Торіс	Capacity Effects	Торіс
	Allowable Capacities & Grandfathering		Mount Analysis
▼	Anchor Rods & Grout Consideration		Risk Category & Site Hardening
	Angle Strengths		Rooftop Converging Wind
	Corrosion Control Standards		Topographic Factor
	Drone Usage		Verification Inspections
	Ground Elevation Factor		Wind Direction Probability & Clean Poles
	Modification Factor / Reliability Factor		Wind Speeds

Allowable Capacities / Grandfathering

Code Location: Section 15

Criteria (one of following):

- Maximum Stress = 105%
- Current vs. Original Design $\leq 5\%$
- Current vs. Structural Design Upgrade ≤ 5% Increase

How is it applied:

- 1. Baseline Analysis in Rev. H
- 2. Current Analysis in Rev. H
- 3. Compare against one another to ensure $\leq 5\%$ deviation

Impact: 105% codified Limit upgrades to established structures

Angle Strengths

Code Location: Section 4.5.4.2

Criteria:

- Updated angle strength derivation
- ASCE10-15

How is it applied:

Replaces typical AISC equations

- 11% increase for short members
- 30% increase for intermediate members
- 27% increase for long members

Anchor Rod & Grout

Code Location: Section 4.9.9, Annex Q

Criteria:

- Assessment of anchor rods as load carrying member
- Not similar to a fastener

How it is applied:

- Anchor rods assessed considering multiple loadings and rod projections
- Grout impacts differently
- Greater emphasis on threaded diameter and combined loading

- Potential increase in anchor rod usages
- Installation and grout details critical

Corrosion Control

Code Location: Annexes A14.4 & H

Criteria:

- Steel in contact with soil
- Focus on guyed anchor rods

How is it applied:

- Owner controlled
- Site specific assessment

- Awareness of anchor condition
- Safety

Drones

Code Location: Annex J

Criteria:

M

- Use of UAV to replace climbing tower and land survey
- LIDAR (Light Detection and Ranging)
- Photogrammetry

How is it applied:

- Drone with camera or laser technology
- Data measured and processed
- Desired information provided

- Improved or limited data and consistency
- Improved safety
- Cost and availability

Ground Elevation Factor

Code Location: Section 2.6.8 / Table 2-6

Criteria:

- NEW Ground Elevation Factor (K_e)
- Based on tower <u>base</u> height above sea level

How is it applied:

• Factor per below table used to reduce wind pressure

Ground Elevation, z _s		Ground Elevation Factor
Feet	Meters	Ke
< 0	< 0	1.00
0	0	1.00
1000	305	0.96
2000	610	0.93
3000	914	0.90
4000	1219	0.86
5000	1524	0.83
6000	1829	0.80
> 6000	> 1829	Refer to 2.6.8

Impact:

 Some high level terrain towers (i.e. Denver) can receive > 15% additional capacity

Modification Factor / Reliability Factor

Code Location: Annex S

Criteria:

- Risk Category II
- Less stringent loading
- Mandatory inspections and repair
- Not applicable to new structures

How is it applied:

- 0.95 factor applied to wind loads
- 0.85 factor applied to ice thickness

- 5% demand reduction, MP and SST
- 5 20% demand reduction, GT
- Inspection planning
- Maintenance remediation

Mounts Analysis

Code Location: Section 16.0

Criteria:

- New standardized mount analysis methods and procedures.
- Prescribed Loads
 - 250lbs / 500lbs at specific location
 - Rigging Plans

How is it applied:

• All equipment additions on mount require structural analysis unless:

Less than 5% increase from Original Design or Last Structural Modification

-OR-

Changed conditions are within documented capacity

- More consistent analysis
- Safer Structures
- Many new mounts / mount mods HOME

Risk Category

Code Location: Section 2.2, Table 2-1

Criteria:

- Structure Class \rightarrow Risk Category
- Matches IBC

How is it applied:

• Windspeed and Importance Factors increase/decrease design loads for wind, ice and seismic

- Clarity between Categories
- Hardened Network defined

Rooftop Converging Wind

Code Location: Section 2.6.7 / Annex A.2.6.7

Criteria:

- **NEW** Ground Elevation Factor (K_s)
- Accounts for wind speed up over isolated tall buildings (>50' or >50' of surrounding buildings)

How is it applied:

• Factor in wind pressure calculation

- Increase in demand of some rooftop structures for tall and/or isolated buildings
- 5%-30% potential increase for qualifying structures

Topographic Factor

Code Location: Section 2.6.6, Figure 2-1, A.2.2.6

Criteria:

• Rev H contains (3) methods of Topographic evaluation:

Method	Туре	Notes
1	Simplified	Similar to formal Rev. G method
2	Rigorous	Adopts SEAW-RSM-03. What many engineers were already doing under Rev. G. Just made more formal.
3	Site-Specific	Requires recognized published literature and/or research

How is it applied:

Impact:

 More accurate analysis → Less Conservative

Verification Inspections

Code Location: Annex N & Annex O

Criteria:

Inspections & Observations before, during and after construction for:

- New Site Builds
- Tower Modifications

How is it applied:

Engineering documents to have required checklists within per code which may include:

- Material Test Reports
- Weld Inspections
- Foundation (rebar & concrete) Inspections
- Anchor Rod Inspections & Pull Tests
- Member Size Verification
- Member Connection Verification
- Climbing Facilities Inspection

- Potential higher cost through construction for those currently not performing
- Safer structures with a higher integrity<u>HOME</u>

Wind Direction Probability Factor

Code Location: Section 2.6.11 / Table 2-2

Criteria:

 Existing factor (K_d) but with an adjustment:

Concealment Poles 0.95 in Rev. G \rightarrow 1.0 in Rev. H

How is it applied:

• Factor in wind pressure calculation

Impact:

 Reduces capacity of concealment poles by 5%

Note: Canceled out by "drag factor" changes on clean poles

Clean Poles – Drag Factors

Code Location: Table 2-8b

Criteria

- Wind Force Coefficients (C_f)
- Table contains new values for structures without linear appurtenances

How is it applied:

Applied to projected area
calculations → Reduces footprint

Impact:

• "Bare" poles receive some potentially substantial additional capacity based upon shape:

Pole Shape	% Reduction
Round	25
18-Sided	3
16-Sided	13
12-Sided	15
8-Sided	0

Wind Speeds

Code Location: Annex B

Criteria:

- ASCE7-16 Wind Maps
- 300 / 700 / 1700 / 3000 year recurrence
- Hurricane and thunderstorm updates

How is it applied:

 Different windspeeds used at same geographic location based on Risk Category

- 90%+ of US receives wind speed reduction, up to 30%
- Inland Florida wind speeds slight increase
- Improved assessment of risk

